
ECE 604, Lecture 3

August 28, 2018

1 Introduction

In this lecture, we will cover the following topics:

• Boundary Conditions

• Electric Energy

• Capacitance

Additional Reading:

• Textbook 1.14, 1.22

Printed on September 7, 2018 at 12 : 30: W.C. Chew and D. Jiao.
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2 Boundary Conditions in 1D Poisson’s Equa-
tion

Boundary conditions are manifestation of the partial differential form of Maxwell’s
equations. Take for example a one dimensional Poisson’s equation that

d

dx
ε(x)

d

dx
Φ(x) = −%(x) (2.1)

where ε(x) represents material property that has the form given in Figure 1.

Figure 1:

In the above, %(x) represents a charge distribution. In this case, the charge
distribution is everywhere zero except at the location of the charge sheet, where
the charge density is infinite: it is represented mathematically by a delta func-
tion1 in space.

1This function has been attributed to Dirac who used in pervasively, but Cauchy was aware
of such a function.
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To find the boundary condition of the potential Φ(x) at x0 , we integrate
(2.1) over an infinitesimal width around x0, namely

ˆ x0+∆

x0−∆

dx
d

dx
ε(x)

d

dx
Φ(x) =

ˆ x0+∆

x0−∆

dx%(x) (2.2)

or

ε(x)
d

dx
Φ(x)|x0+∆

x0−∆
∼= −%s (2.3)

lim
∆→0

ε(x+)
d

dx
Φ(x+)− ε(x−)

d

dx
Φ(x−) ∼= −%s, (2.4)

Since E = ∇Φ,

Ex(x) = − d

dx
Φ(x), (2.5)

The above implies that

ε(x+)Ex(x+)− ε(x−)Ex(x−) = %s (2.6)

or

Dx(x+)−Dx(x−) = %s (2.7)

where

Dx(x) = ε(x)Ex(x) (2.8)

The lesson learned from above is that boundary condition is obtained by inte-
grating the differential form of an equation over an infinitesimal small segment.

3 Boundary Conditions from Differential Equa-
tions

We have already defined the partial differential form of Faraday’s Law for statics,
or when ∂

∂t = 0, and Gauss’s law. They are

∇×E = 0 (3.1)

∇ ·D = % (3.2)

4 Boundary Condition from Faraday’s Law

We will start with Faraday’s law, and integrating it over a small cross-section
straddling two media interface.
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Figure 2:

Converting the surface integral into a line integral using Stokes’s theorem,
one gets

ˆ
∆S

(∇×E) · dS =

˛
∆C

E · dl (4.1)

When ∆h ≈ 0, ∆l ≈ 0, we can approximate the line integral as (see Figure 2)

˛
∆C

E · dl ≈ E1 · t̂∆l + E1 · n̂
∆h

2
+ E2 · n̂

∆h

2
(4.2)

−E2 · t̂∆l −E2 · n̂
∆h

2
−E1 · n̂

∆h

2
= 0 (4.3)

Letting ∆h→ 0, then

E1 · t̂∆l −E2 · t̂∆l = 0 (4.4)

or

E1t = E2t (4.5)

The above implies that the tangential componential of E is always continuous
due to Faraday’s law.

5 Boundary Condition from Gauss’s Law

Gauss’s law tells us that

∇ ·D(r) ≡ %(r) (5.1)

in partial differential form
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Figure 3:

In the above, %(r) is the volume charge density. However, if there is a surface
charge density residing at the media interface, the volume charge density is
infinitely large at the interface. Integrating (5.1) over ∆V representing a small
pill box straddling the dielectric interface (see Figure 3), we have

˚
∆V

∇ ·DdV =

˚
∆V

%dV (5.2)

By using Gauss’s divergence theorem, the left-hand side becomes

‹
∆S

D · dS =

‹
∆S

D · n̂dS

= D2 · n̂∆A−D1 · n̂∆A+
1

2
D2 · ρ̂2πa∆h+

1

2
D1 · ρ̂2πa∆h (5.3)

But ˚
∆V

%dV = Q = %s∆A (5.4)

Since ‹
∆S

D · dS =

˚
∆V

%dV = Q = %s∆A (5.5)

we have, after letting ∆h→ 0 and let ∆A remain small,

D2 · n̂∆A−D1 · n̂∆A = %s∆A (5.6)
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or that

n̂ · (D2 −D1) = %s (5.7)

The way to argue that the field in a conductor has to be zero differs from
that for the perfect conductor. The proverbial arguments given is that:

“If medium 1 is a perfect conductor, then σ → ∞ but J1 = σE1. An
infinitesimal small E1 will give rise to an infinite current J1. To avoid this
ludicrous situation, thus E1 = 0. This implies that D1 = 0 as well.”

Figure 4:

Since tangential E is continuous, from Faraday’s law, it is still true that

E2t = E1t = 0 (5.8)

But since

n̂ · (D2 −D1) = %s (5.9)

and that D1 = 0, then

n̂ ·D2 = %s (5.10)

In other words, normal D2 6= 0, tangential E2 = 0. The sketch of the electric
field in the vicinity of a perfect conducting surface is shown in Figure 4.

The above argument is true for electrodynamic problems. However, one does
not need the above argument regarding the shielding of the static electric field
from a conducting region. In the situation of the two conducting objects example
below, as long as the electric fields are non-zero in the objects, currents will keep
flowing. They flow until the charges in the two objects orient themselves so that
electric current cannot flow anymore. This happens when the charges produce
internal fields that cancel each other giving rise to zero field inside the two
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objects. Then the boundary condition that the fields have to be normal to the
conducting object surface is still true for elecrostatics. A sketch of the electric
field between two conducting spheres is show in Figure 5.

Figure 5:

6 What About a Conductor Media Interface?

Figure 6:

7



The current continuity equation is

∇ · J = − ∂

∂t
% (6.1)

It is a statement of charge conservation. If ∂
∂t = 0, then

∇ · J = 0 (6.2)

The above is KCL (Kirchhoff current law) in disguise. The boundary condition
can be obtained by integrating (6.2) over a small pill-box, or

˚
∆V

dV∇ · J = 0 (6.3)

or ‹
∆S

dSn̂ · J = 0 (6.4)

Consequently, one obtains that (see Figure 6)

J2 · n̂∆A+ J1 · (−n̂)∆A+
1

2
J2 · %̂2πa∆h+

1

2
J1 · %̂2πa∆h = 0 (6.5)

Letting ∆h→ 0, then

n̂ · (J2 − J1) = 0 (6.6)

In other words, J2n = J1n. Since J = σE, one gets

σ2E2n − σ1E1n = 0 (6.7)

But Ampere’s law still implies that

E2t − E1t = 0 (6.8)

And Gauss’s law implies that

ε2E2n − ε1E1n = %s (6.9)

In order for (6.7) to be consistent with (6.9), %s 6= 0. Hence, at a conductor
interface, surface charge has to accumulate.2

7 Boundary Conditions from Poisson’s Equation

From Poisson’s equation

∇ · εΦ = −% (7.1)

2%s = 0, however, if ε2/ε1 is equal to σ2/σ1.
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one can integrate the above over a small pill box to obtain

ε2n̂ · ∇Φ2 − ε1n̂ · ∇Φ1 = −%s (7.2)

where %s is the surface charge density of a surface charge at the interface.
In the above, if we assume that % at most has a delta function singularity,

then ∇Φ cannot be singular. Therefore, by integrating ∇Φ along a line segment
across the interface, then

Φ1 = Φ2 (7.3)

8 Electric Energy

For a point charge, it is known from Coulomb’s law that

E =
q

4πεr2
r̂, Φ =

q

4πεr
(8.1)

Since E = −∇Φ, by integrating this equation along a line connecting two points
P1 and P2, it can be shown that3

ΦP2
− ΦP1

= −
ˆ P2

P1

E · dl (8.2)

Furthermore, by noting that Φ→ 0 when r →∞, one arrives at that

Φ =

ˆ ∞
r

E · dl (8.3)

Since E is the force on a unit charge, the right-hand side of the above is the work
done on moving a unit charge from infinity to the point r. Thus, the potential
Φ expressed in (8.1) can be interpreted as work needed to bring a unit charge
next to another charge with value q.

The energy needed to bring two charges q1 and q2 next to each other with
distance R12 is then

u12 =
q1q2

4πεR12
(8.4)

The energy contained in N charges, when they are brought to close proximity
of each other is by summing over their pairwise energy. Therefore,

UE =
1

2

N∑
i=1

N∑
j=1

q1q2

4πεRij
, i 6= j (8.5)

The factor 1
2 is needed because the double summation above double counts.

3The result is independent of the shape of the line because by Faraday’s law,
´
C E · dl− 0

for any C. Such a field where ∇×E = 0 is known as a conservative field.

9



By using the fact that the potential at the location of charge i due to the
other charges j = 1, . . . , N is

Φi =

N∑
j=1

qi
4πεRij

, j 6= i (8.6)

implies that

UE =
1

2

N∑
i=1

qiΦi (8.7)

When their point charges are replaced by a continuum, or by charge density,
then

UE =
1

2

ˆ
v

%ΦdV (8.8)

Using Gauss’s law that ∇ ·D = %,

UE =
1

2

ˆ
v

(∇ ·D)ΦdV (8.9)

The above ∇ operator can be made to operate on Φ by performing integration
by parts in 3D. Finally,

UE = −1

2

ˆ
v

D · ∇ΦdV =
1

2

ˆ
V

D ·EdV (8.10)

For an isotropic medium, D = εE, and upon substitution, the above becomes

UE =
1

2

ˆ
V

εE ·E =
1

2

ˆ
V

ε|E|2dV (8.11)

9 Energy Stored in a Capacitor

Assume that a parallel plate capacitor is charged to a voltage Vo, and that the
separation of the parallel plate is d, and that the area of the plate is A, then
the electric field between the plate is E = Vo/d and D = εVo/d.4 The volume
between the plate is Vol = Ad. Then the stored energy is approximately given
by

U =
1

2
VolDE =

1

2
(Ad)

εVo
d

Vo
d

=
1

2

(
εA

d

)
V 2
o =

1

2
CV 2

o (9.1)

This is the proverbial formula for stored energy in a parallel plate capacitor.

4This field is almost uniformly distributed save near the edge of the plates.
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